

"

"

Instructor's knowledge was excellent. Great real-world experience.

Watch our course intro video.

LTE Air Interface Operation

Course Description

With the introduction of LTE came the development of a new radio technology based on OFDMA / SC-FDMA. This course focuses on the LTE Air interface and provides a detailed analysis of the structure and features of the physical layer, as well as the layer 2 and 3 protocols, before explaining how these are used in the operation of the radio link from initial attach, through service delivery and mobility. Finally, the concept and operation of LTE-M and NB-IoT are detailed.

Prerequisites: LTE System Engineering, or equivalent knowledge.

1. LTE Air Interface

Topic areas covered include:

- Frequency Bands.
- 3GPP Spectrum Bands.
- EARFCN.
- E-UTRA Protocols:
 - Uu Interface:
 - RRC, PDCP, RLC and MAC.
 - S1-MME Interface:
 - S1AP and SCTP.
 - S1-U Interface: - GTP-U.
 - X2 Interface:
 - X2AP.
- UE and eNB Capabilities:
 - eNB Capabilities.
- Home Evolved Node B.
- UE Capabilities.
- Air Interface Identities:
 - UE Identities:
 - IMSI, C-RNTI, GUTI, S-TMSI, IMEI and IP Address.
 - E-UTRAN Identities:
 - eNB ID, E-CGI, PCI and TAI.
 - EPC Identities:
 - GUTI, IP Addresses and FQDN.
- LTE-Advanced Features:
 - LTE Releases.
 - LTE-Advanced.

2. LTE Physical Layer Structure

Topic areas covered include:

- LTE Frame Structure:
 - LTE FFT Sizes.
 - Subcarriers and Reference Signals.
 - Combating Interference in the Time Domain.
 - Cyclic Prefix.
 - Frame Structure:
 - Ts (Time Unit).
 - Type 1 Radio Frames, Slots and Subframes.
 - Type 2 Radio Frames, Slots and Subframes.
- Resource Grid and Resource Blocks:
 - Downlink PRB Parameters: - RB and RE.
 - Uplink PRB Parameters.
- Downlink Channel for Initial Access:
 - Downlink Synchronization Signals (FDD):
 PSS and SSS.
- Downlink Reference Signals:
 - Cell Specific Reference Signals: - CRS-RS vs CSI-RS.
 - UE Specific Reference Signals.
- The LTE Downlink Physical Channels:
 - Broadcast Information.
 - PCFICH.
 - PDCCH.
 - Enhanced PDCCH.
 - PHICH.
 - PDSCH.
 - PMCH.

LTE Physical Layer Structure (cont.)

- LTE Uplink Physical Channels:
 - Multiplexing of Control Signalling and UL-SCH Data.
 - Uplink Data Transmission.
 - PUCCH (Physical Uplink Control Channel).
 - PRACH:
 - Preamble Codes.
- Uplink Reference Signals:
 - Demodulation Reference Signal: - DRS.
 - Sounding Reference Signal: - SRS.
- FDD/TDD Timing:
 - FDD Operation.
 - TDD Operation.

3. LTE Physical Layer Features

Topic areas covered include:

- Transmission Modes;
 - Transmission Options.
 - Transmit Diversity.
 - MIMO.
 - MU-MIMO.
- HARQ Operation:
 - ARQ Operation.
 - HARQ Operation.
 - FDD Downlink HARQ.
 - FDD Uplink HARQ.
 - TDD HARQ.
- Feedback Mechanisms:
 - Feedback Options in LTE.
 - CQI (Channel Quality Indicator).
 - PMI (Precoding Matrix Indicator).
 - RI (Rank Indication).
- Carrier Aggregation:
 - Carrier Aggregation in 3GPP.
 - Carrier Aggregation Terminology.
 - Carrier Aggregation Scheduling.

4. LTE Air Interface Protocols

Topic areas covered include:

• The E-UTRA Protocol Stack.

LTE Air Interface Protocols (cont.)

- E-UTRA Signalling:
 - Stratums.
 - NAS Messages.
- EMM and ECM States:
 - EPS Mobility Management States.
 - EPS Connection Management States.
- Radio Resource Control:
 - RRC Messages.
 - RRC States.
 - RRC Connection.
- E-UTRA Radio Bearers:
 - Signalling Radio Bearers.
 - Dedicated Radio Bearers.
- Packet Data Convergence Protocol:
 - PDCP Services.
 - PDCP Profiles.
 - PDCP Headers.
- Radio Link Control:
 - Transparent Mode.
 - Unacknowledged Mode.
 - Acknowledged Mode.
 - RLC PDU's.
- Medium Access Control:
 - Services expected from physical layer.
 - LTE Logical and Transport Channels.
- RNTI Identities:
 - MAC Headers.
 - Random Access Process.

5. LTE Operational Procedures

Topic areas covered include:

- Connecting to a Cell:
 - Cell Search.
- System Information.
 - PLMN Selection.
 - Cell Selection.
 - Random Access Process.
 - RRC Procedures at Initial Attach.
- Security:
 - EPS Authentication and Key Agreement.
 - Key Distribution in the EPS.
 - Security Procedures.
 - Algorithms.

LTE Operational Procedures (cont.)

- LTE Capabilities.
- Data Transfer:
 - Uplink Scheduling.
 - Downlink Scheduling.
- Discontinuous Reception (Paging).
- DRX in Active Mode.
- Timing Advance.
- Power Control.
- VoLTE Scheduling:
 - Improving Coverage with TTI Bundling.
 - Voice Scheduling and SPS.

6. LTE Air Interface Mobility

Topic areas covered include:

- Mobility Functional Architecture:
 - eNB.
 - MME.
 - Tracking Area.
- LTE Measurements:
 - RSRP (Reference Signal Received Power).
 - RSSI (Received Signal Strength Indicator).
 - RSRQ (Reference Signal Received Quality).
- LTE Idle Mode Mobility:
 - LTE Cell Reselection.
 - Priority Based Inter-RAT Cell Reselection.
 - Reselection to a Higher Priority Frequency or RAT cell.
 - Reselection to a Lower Priority Frequency or RAT cell.
- E-UTRA Measurements:
 - Measurement Configuration Options.
 - Basics of Measurement Objects.
 - Basics of Report Configuration.
 - LTE Events.
 - RRC Measurement Configuration Example.
 - Gap Configuration.
 - Timing.
- Handover Process:
 - X2 Handover Request and Response.
 - RRC Connection Reconfiguration.
 - Random Access.
 - SN Status Transfer and Status Report.

7. LTE-M

Topic areas covered include:

- Fundamentals of LTE-M:
 - LTE-M Benefits.
- LTE-M Device:
 - Handset Categories.
 - Category M1.
- LTE-M Channels:
 - PBCH.
 - MPDCCH.
 - PDSCH (SIB1-BR).
 - PDSCH.
 - PUSCH.
 - PUCCH.
 - PRACH.
- LTE-M Operation:
 - RRC Connection Establishment.
 - Session Establishment.
 - Mobility.
- Power Efficient Features:
 - Power Save Mode.
 - Extended Discontinuous Reception.

8. NB-IoT

Topic areas covered include:

- Fundamentals of NB-IoT:
 - NB-IoT Benefits.
 - Not Supported in NB-IoT.
- NB-IoT Device:
 - NB-IoT Category.
 - Power Category.
- NB-IoT Downlink Air Interface:
 - Downlink NB-IoT Channels.
 - Downlink Frame Structure.
 - NRS (Narrowband Reference Signal).
 - Narrowband Primacy Synchronization Signal.
 - Narrowband Secondary Synchronization Signal.
 - NPBCH / MIB-NB.
 - LTE-NB NPDSCH and NPDCCH Mapping.
 - LTE-NB for Guard Band / Standalone Deployment.

NB-IoT (cont.)

- NB-IoT Uplink Air Interface:
 - NB-IoT Uplink Channels.
 - NB-IoT Uplink Frame Structure.
 - NPUSCH Resource Unit.
 - NPUSCH DMRS.
 - NPRACH.
- NB-IoT Operation:
 - Scanning for NB-IoT.
 - MIB/SIB and Scheduling.
 - Cell Selection for NB-IoT.
 - NB-IoT Attach.
 - NB-IoT Access Procedure.
 - Resource Allocation.
 - Peak Data Rates.
 - Multi Carrier.
- NB-IoT Optimization Features:
 - CloT Control Plane Delivery.
 - Power Save Mode.
 - Extended Discontinuous Reception.

Watch a Sample Video Online

NetX

The Mpirical Network Visualisation Solution: **NetX Bringing Telecoms to Life!** Imagine the benefits of having an entire mobile network available from your desktop.

- Where you can view a complete network map.
- Watch call flows across the network.
- Investigate network procedures.

NetX does this... and even more with our NetX customization options! NetX is not just a learning aid, it is a valuable resource in the day to day activities of any telecoms professional and has been spotlighted as such by the 3GPP.

Explore NetX further at www.mpirical.com/netx

+44(0)1524 844669

6

www.mpirical.com